Inverse eigenvalue problems for centrosymmetric matrices under a central principal submatrix constraint
نویسندگان
چکیده
منابع مشابه
The Inverse Problem of Centrosymmetric Matrices with a Submatrix Constraint
By using Moore-Penrose generalized inverse and the general singular value decomposition of matrices, this paper establishes the necessary and sufficient conditions for the existence of and the expressions for the centrosymmetric solutions with a submatrix constraint of matrix inverse problem AX = B. In addition, in the solution set of corresponding problem, the expression of the optimal approxi...
متن کاملThe Inverse Eigenproblem of Centrosymmetric Matrices with a Submatrix Constraint and Its Approximation
In this paper, we first consider the existence of and the general expression for the solution to the constrained inverse eigenproblem defined as follows: given a set of complex n-vectors {xi}i=1 and a set of complex numbers {λi}i=1, and an s-by-s real matrix C0, find an n-by-n real centrosymmetric matrix C such that the s-by-s leading principal submatrix of C is C0, and {xi}i=1 and {λi}i=1 are ...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملNumerical solutions of AXB = C for centrosymmetric matrix X under a specified submatrix constraint
We say that X = [xi j ]n i, j=1 is centrosymmetric if xi j = xn− j+1,n−i+1, 1 i, j n. In this paper, we present an efficient algorithm for minimizing ‖AX B−C‖ where ‖·‖ is the Frobenius norm, A∈Rm×n , B∈ Rn×s , C ∈Rm×s and X ∈Rn×n is centrosymmetric with a specified central submatrix [xi j ]p i, j n−p . Our algorithm produces a suitable X such that AX B=C in finitely many steps, if such an X ex...
متن کاملA Solution of Inverse Eigenvalue Problems for Unitary Hessenberg Matrices
Let H ∈ Cn×n be an n × n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H = H11 H12 H21 H22 , (0.1) where H11 is its k×k leading principal submatrix; H22 is the complementary matrix of H11. In this paper, H is constructed uniquely when its eigenvalues and the eigenvalues of b H11 and b H22 are known. Here b H11 and b H22 are rank-one modifications of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics and Computer Science
سال: 2017
ISSN: 2008-949X
DOI: 10.22436/jmcs.017.04.04